In an effort to keep these postings interesting, some blogs will stray from the task at hand and offer some level of general insight into the automotive field. Refraining from ‘Science Content’ warnings or Nerd Alerts, I will try to present technically-riddled subjects in contextual format with my own brand of whimsical nonsense. I don’t think the physics behind air/fuel mixture vortices would provide much value unless reflecting upon a certain Honda’s ancestral roots and the Compound Vortex Controlled Combustion (CVCC) engine that it sported. But, I digress with purpose.
You’ve heard of the Honda Civic and you’ve also heard terms like V8, Straight Six, Cubic Inches, Liters, 4-Stroke/2-Stroke, etc. when referring to automotive engines. Aside from sounding neato, these are all useful in determining what you’ve got under the hood (bonnet, if you’re British).
V8 refers to two things: 8 cylinders in a V formation – that is 2 rows of 4 cylinders set at an angle to each other (a V6 has two rows of 3 cylinders and so forth). Straight/Inline is an arrangement of 1 row with all cylinders lined up: I8, I6, I5, I4. Since the ‘70s, American manufacturers wandered from the standard straight six to pursue V6s and never looked back. The choice was made for economical reasons, rather than performance reasons and many auto makers have followed. I6s are still out there, though - BMW has built quite a reputation on theirs (the “i” following most of their model numbers means inline). Engine configurations are not limited to Vs and Is - there are many more including (but no limited to) Slant, Flat, Opposed, W, and H, but I’ll let The Internet answer your questions on those. All of these types of engines have their benefits and drawbacks and are very useful in certain applications.
Intermission: The Parts of an Engine
Depicted below is an exploded view of an Inline 4, similar to the TR4A’s engine. The cylinders are merely guides for the pistons to move up and down in. The pistons go through strokes to achieve power:
1. Intake Stroke: Down, sucking air/fuel mixture in.
2. Compression Stroke: Up, creating compression – the spark plug causes detonation at the top.
3. Combustion/Power Stroke: Down, pushed from the ignition/explosion.
4. Exhaust Stroke: Up, pushing out spent gasses; and back to 1.
Each piston is connected to the crankshaft, which translates the up-and-down to rotation. The crankshaft is also connected to the camshaft, which controls the timing of intake and exhaust valves. This is all shown in the second graphic, which I obtained from howstuffworks.com.

This comment has been removed by a blog administrator.
ReplyDelete